主页 科普资讯 今日要闻 2030年建成监测预警体系—— 中国将这样迎战“X 疾病”

2030年建成监测预警体系—— 中国将这样迎战“X 疾病”

张佳星
2024年11月27日 1914

传染病大流行会不会再次发生?世界卫生组织(WHO)给出的答案是:会。

在多个国际会议上,WHO就“X疾病”暴发的可能性发出警告。

“X疾病”并非当下真实存在的特定疾病。根据WHO的解释,“X疾病”指一种未知的病原体引发严重国际大流行的可能性。它有机会在任何时间、由多种来源触发,恐会夺去数百万人的生命。

“从理论上说,病毒在不同种属间传播过程中可能发生变异,从而出现有害的跨种传播。”中国医学科学院北京协和医学院群医学及公共卫生学院执行院长杨维中说,尽管不知道会是哪种病毒最终“突破种属屏障”进入人群,但病毒不断变异就有可能掀起全球传染病大流行。

2030年建成监测预警体系—— 中国将这样迎战“X 疾病”

“X疾病”犹如暗夜幽灵,让预测变得难上加难。然而,在人类与病毒的较量中,监测预警并非束手无策。

“到2030年,我国将建成多点触发、反应快速、科学高效的传染病监测预警体系。”杨维中介绍,今年8月,国家疾控局等9个部门联合印发了《关于建立健全智慧化多点触发传染病监测预警体系的指导意见》,旨在通过数智赋能,提升对新发突发传染病、群体性不明原因疾病等的预警灵敏性和准确性。

单点到多点,多渠道发现传染病风险和苗头

2022年底的新冠病毒感染者猛增,居家治疗居多,原有的传染病监测系统几近失灵。

“我们必须弄清楚究竟有多少人感染,什么时候出现峰值,这些信息是政府决策的重要参考。”杨维中说,当时接到国家疾控局的任务,他们团队开始使用网上的数据。

在传统的疫情监测分析中,基础数据主要来自医疗机构。多年前,时任中国疾病预防控制中心副主任的杨维中领导过传统传染病监测预警系统建设。2003年SARS疫情之后,我国新发突发传染病监测体系逐步构建起来。体系依托门急诊、住院、检测等哨点监测数据和各级各类医疗机构法定报告传染病情况,由疾控部门进行汇总和研判。

“那时的预警系统只能用‘单点’数据,即患者到医院就诊后的数据,而且只反映法定报告中的30多种传染病,并不包含未知的新发传染病。”杨维中说,“当单一来源的数据无法精确反映疫情变化时,启发我们要善于利用‘多点’数据。”

杨维中说的“多点”数据包括网络搜索热词及增量、药品购买情况、互联网医院咨询情况等各类能够间接反映疫情情况的数据。基于它们,团队利用前期研发模型,对疫情走势和规模作出了重要研判。

“能够纳入的‘多点’数据还有很多,比如学生缺课、职工缺勤、物流运输等情况。”杨维中说,越来越多的实践证明,基于多渠道监测数据的分析研判,能够更早发现传染病风险和苗头。

被动变主动,前置软件自动获取异常信号

新冠疫情发生后,传染病预警要“变被动为主动”已成业界共识。

天津、湖北、安徽等地已开始布置实施国家传染病智能监测预警前置软件。10月30日,天津市第一中心医院、天津市儿童医院等4家试点医疗机构前置软件监测数据达标,前置软件正式切换应用。

2030年建成监测预警体系—— 中国将这样迎战“X 疾病”

“在医疗机构部署前置软件,不仅能实现数据采集自动化,还能通过数据共享,实现智能监测。”天津市疾控中心信息所所长刘军介绍,前置软件的数据自动采集功能大大减少了医务人员的重复劳动。前置软件与医院信息管理系统数据的联调共享,省去了人工上报的二次录入环节,也省去了传染病确诊病例转诊到专科医院后的信息再录入。

近期登革热感染人数增加,呈现地域性高发态势。刘军介绍,如果患者在当地医院就诊后再进行跨省就医,安装了前置软件的系统会自动弹窗,提醒医生关注病例,并显示患者就医路径。

国家疾控局副局长孙阳指出,目前我国正在推进前置软件部署,未来要在监测点位和项目上不断“扩面、增效、提质”,特别是加强污水监测等新型监测手段。

“污水监测的优势在新冠疫情期间就展现出来了。”杨维中介绍,污水监测数据人为干预少,且具有脱敏性,能够提示社区、城市的病毒踪迹,便于长期监测,不仅可提供阳性位点陡增之类的清晰佐证,也能在技术上持续增加病原体检测类别。

在主动抓取模式下,公共卫生相关数据和异常信号的获取正在朝着“零时间差”的目标迈进。

单部门到跨部门,联手捕捉病毒“蛛丝马迹”

病原体的传播没有国界,更不囿于部门条块限制。

“比如,卫生部门可能通过病例监测感知一个自然疫源疾病,而农业部门可能在动物疫病中已经获得异常信号。”中国疾病预防控制中心卫生应急中心副主任向妮娟提出了一个新的可能性:如果说在不同部门的监测系统里展现的是病原体各阶段的“照片”,那么建立一个连续数据系统,就可以“视频化”描述病毒变化和趋势。

跨部门的连续数据分析之于疫情预警,犹如卫星云图之于天气预报。但后者的数据来源单一,前者则非常多元——气象气候数据与传染病暴发存在关联,由气象部门掌握;

水鸟、旱獭、地鼠等野生动物是病毒的天然宿主,它们的种群变化等情况与病毒的变异相关,林草部门更熟悉这类数据;

病毒在饲养的鸡鸭、猪牛身上繁殖,发生变异甚至跨种传播,农业部门掌握的数据则非常关键。

还有海关部门的病例输入数据,教育部门的因病请假数据,互联网检索、寻医购药、社交平台数据等都能够“映射”病毒传播的踪影,但这些数据“遗珠”散落各处。

多部门联合发布的政策文件强调,完善部门联动机制,协同开展传染病监测工作。

然而,跨部门数据融合并非数据的简单集合。北京市疾病预防控制中心研究员王全意表示,不同部门收集数据的意图各异,形成的数据内容和呈现形式往往不同,很难做到“拿来就能用”。

“解决数据质量参差不齐的问题必须依靠技术创新。”杨维中打比方说,成功的预警系统就好比一个健康人的肠胃,不能只吃精米白面,要能消化各类五谷杂粮。不同部门的数据来了要经过筛选、分类和标准化等处理才能用于预警模型中。

“为了提升传染病预警系统的准确性,截至目前,我们开发了5个软件和系统,形成了5项标准和专利,并承担了10项相关项目任务。”杨维中说,中国医学科学院团队通过科学研究把数据融合需要的处理方法、构建模型等基础元件搭建起来,未来将放在开放平台上供应用单位选用。可通过模块组合承担不同监测预警任务,助力跨部门融合和捕捉“X疾病”的踪迹。

专家观点:传染病预警系统应纳入智慧城市建设

1997年,H5N1禽流感病毒第一次从禽类“跳”到人类体内,人感染的致死率高达50%以上。当年的人感染禽流感趋势在香港特区政府对大量活鸡迅速扑杀中停歇下来。也有学者认为,刚刚“跨界”的H5N1仍难以适应人类和鸟类细胞受体的差异,因而难以高效感染人类细胞。

然而,今年10月31日发布的最新研究成果则显示,由牛传人的H5N1亚型病毒已经在美国多个州出现,细胞试验表明其有逐步适应哺乳动物的倾向。

在人类看不见的角落,病毒突破边界、适应性变异从未停歇,它们甚至懂得“迂回”:先到牛、猪、猫等哺乳动物再到人。

正因为如此,在回应下一个“X疾病”会是什么时,不少专家指出可能是新型流感病毒。

“呼吸道传染病最容易引起全球大流行,很容易迅速传播。流感病毒变异快,更容易发生跨种传播进入人体。”杨维中表示,“以通常谈话距离来看,如果有人携带流感病毒,那其他人感染几率很大。而采取血液、体液等其他方式传播的病原体无法快速传播。”

“呼吸道传染病更易在人口接触密切的城市中形成超级传播现象,相较于人口密度低的农村,城市的脆弱性不言而喻。”王全意说。

换言之,“X疾病”下一次来袭或以城市为突破口。

“智慧城市的发展,让我们在研发‘拦截’系统时有了新的思考。”杨维中说,以一个城市为单位构建预警系统更符合实际。在同一个城市圈中,水电气、交通、文化、通信等相对成体系,不同城市又有不同的地域特色,适合个性化建模。此外,大数据局的成立也为智慧城市数据的获得带来了便利。

相关阅读

相关搜索

监测预警体系X疾病

家庭保健报: 时刻关注您的健康!